J. Quant. Spectrosc. Radiat. Transfer Vol. 51, No. 3, pp. 491-510, 1994
Pergamon Elsevier Science Ltd. Printed in Great Britain
e 0022-4073(94)E0012-U 0022-4073/94  $7.00 + 0.00

ERRORS INDUCED BY THE NEGLECT OF POLARIZATION
IN RADIANCE CALCULATIONS FOR
RAYLEIGH-SCATTERING
ATMOSPHERES

M. 1. MisHCHENKO,t] A. A. Lacis,§ and L. D. TRAVIS§

+NASA Goddard Institute for Space Studies/Hughes STX Corporation, 2880 Broadway, New York,
NY 10025 and §NASA Goddard Institute for Space Studies, 2880 Broadway, New York,
NY 10025, U.S.A.

(Received 6 May 1993)

Abstract—Although neglecting polarization and replacing the rigorous vector radiative
transfer equation by its approximate scalar counterpart has no physical background, it is a
widely used simplification when the incident light is unpolarized and only the intensity of the
reflected light is to be computed. In this paper we employ accurate vector and scalar
multiple-scattering calculations to perform a systematic study of the errors induced by the
neglect of polarization in radiance calculations for a homogeneous, plane-parallel Rayleigh-
scattering atmosphere (with and without depolarization) above a Lambertian surface.
Specifically, we calculate percent errors in the reflected intensity for various directions of light
incidence and reflection, optical thicknesses of the atmosphere, single-scattering albedos,
depolarization factors, and surface albedos. The numerical data displayed can be used to
decide whether or not the scalar approximation may be employed depending on the parameters
of the problem. We show that the errors decrease with increasing depolarization factor and/or
increasing surface albedo. For conservative or nearly conservative scattering and small surface
albedos, the errors are maximum at optical thicknesses of about 1. The calculated errors may
be too large for some practical applications, and, therefore, rigorous vector calculations should
be employed whenever possible. However, if approximate scalar calculations are used, we
recommend to avoid geometries involving phase angles equal or close to 0° and 90°, where
the errors are especially significant. We propose a theoretical explanation of the large
vector/scalar differences in the case of Rayleigh scattering. According to this explanation, the
differences are caused by the particular structure of the Rayleigh scattering matrix and come
from lower-order (except first-order) light scattering paths involving right scattering angles and
right-angle rotations of the scattering plane.

1. INTRODUCTION

Although neglecting the vector nature of light and replacing the rigorous vector radiative transfer
equation by its approximate scalar counterpart has no physical background, it is a widely used
simplification when the incident light is unpolarized and only the intensity of multiply scattered
light is to be computed. The errors in the reflected intensity resulting from the neglect of
polarization were examined by Hansen' on the basis of accurate adding/doubling calculations of
multiple scattering. He concluded that in most cases the errors in the scalar approximation should
be less than or of the order of 1% for light reflected by a cloud of spherical particles with sizes
of the order of or larger than the wavelength of light, which makes the scalar approximation
applicable in radiance calculations for cloud and aerosol layers. On the other hand, it has been
known since the pioneering work by Chandrasekhar? that the errors can be much larger in the case
of a semi-infinite atmosphere with pure Rayleigh scattering. For light reflected by finite Rayleigh
atmospheres Adams and Kattawar? found errors up to 11.7%. Similar large errors are seen in Table
43 of van de Hulst.* However, although the problem of multiple Rayleigh scattering in both vector
and scalar formulations was studied, for example, in Refs. 2-8 and references therein, in great
detail, no systematic study of the large errors induced by neglecting polarization was performed
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and no theoretical explanation of the errrors was suggested. On the other hand, such an
investigation would be of importance for terrestrial and planetary remote sensing studies.> ™
Therefore, it is the aim of the present paper to fill out this gap. Specifically, on the basis of accurate
vector and scalar calculations of multiple light scattering, we systematically examine the vec-
tor/scalar differences in the intensity of the radiation reflected by a homogeneous Rayleigh-scatter-
ing atmosphere for various directions of light incidence and reflection, single scattering albedos,
depolarization factors, optical thicknesses of the atmosphere, and albedos of the underlying
surface, and discuss the corresponding implications for remote sensing studies.

2. BASIC DEFINITIONS

To describe the state of polarization of a beam of light we use the Stokes parameters 1, Q, U,
and V as defined for example by Hansen and Travis.'” The Stokes vector I is defined as a (4 x 1)
column matrix of Stokes parameters as follows:

I
1={L,0,U,V}= g . )

|4

To specify the direction of light propagation in a plane-parallel atmosphere we use the couple
(u, @), where u = cos 9, 9 is the angle between this direction and the inward normal to the upper
boundary to the slab, and ¢ is the azimuth angle which is measured clockwise when looking
upwards. Also, we define u = |u|. The upper boundary of the atmosphere is illuminated by an
unpolarized beam of light incident in the direction (yy, ¢, = 0) and specified by the flux vector
nF,. = n{1,0,0,0}. Multiple light scattering in a homogeneous, plane-parallel, macroscopically
isotropic atmosphere is described by the (vector) radiative transfer equation'*'s

dI(z, u, o (& 1 _
u- (Td: 9) _ —I(z, u,¢)+%£ d¢’J._|du’Z(u, . u', ¢N(t,u’, d")

+2 20 6, o, OF e exp(— /o) )

subject to standard boundary conditions
10,u,)=0, u>0,

1 2n 1 _
I(To, u, d’) = ; J:) d¢ ’ J; d/‘ IRsurf(u’ ¢’ ﬂ,a ¢ /)I(tO’ l“/’ d) l)#/ (3)

+ Uy Rsurf(u, ¢a Hos ¢0 )Finc exp( - IO/”'O), u< 0

Here, 1, is the optical thickness of the atmosphere, 7 is the optical depth, @ is the albedo for single
scattering, Z is the (4 x 4) single-scattering phase matrix, and R, is the (4 x 4) reflection matrix
of the underlying surface. The phase matrix describes the single-scattering transformation of the
Stokes vector of the incident light into the Stokes vector of the scattered light provided that both
Stokes vectors are specified with respect to the corresponding local meridional planes [i.e., the
planes through the light beams and the local normal (u =1)]. Usually, the single-scattering
transformation law is defined with respect to the scattering plane (i.e., the plane through the
incident and scattered beams) by means of the (4 x 4) scattering matrix P(®), where © is the
scattering angle. In this case

Z(w', ¢’ u, ¢) = L(i,) P(O)L(iy), @
where the angles i, and i, are shown in Fig. 1, and

0 0
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Fig. 1. On the definition of the phase matrix.

is the rotation matrix which describes the transformation of the Stokes vector when the reference
plane is rotated around the light beam at an angle f measured anti-clockwise when looking in the
direction of light propagation.

For a purely gaseous atmosphere consisting of randomly oriented anisotropic molecules, the
scattering matrix has the form'

2(1 4+ cos? @) —3sin’ @ 0 0
- —35in’@  2(1+cos’®) 0 0
Pe)=4 0 0 1cos © 0
0 0 0 A%cos ©
1 0 0O
00 00
+A=8 10 6 0 ol (6)
0 0 0O
where
1-06
A=1Ton @
1-26
YT @

and § is the depolarization factor. For pure Rayleigh scattering, the depolarization factor vanishes,
while for most gases it substantially deviates from zero. For example, ¢ is close to 0.03 for air and
0.09 for CO,.

In the scalar approximation, the Stokes vector I is replaced by its first element I (i.e., intensity),
and all the (4 x 4) matrices are replaced by their (1,1)-elements. Throughout the paper, we will
supply rigorously calculated “vector” quantities by the superscript “v”’, while approximate “scalar”
quantities will be supplied by the superscript “s”. To describe the errors in the reflected intensity
resulting from the use of the scalar approximation, we will use several definitions. The percent error
€(to, U, Mo, @) is defined as

Iv(09 — MK, ¢)_Is(0’ — MU, ¢)
IV(Oa —H, ¢)

6(10, By Hos ¢) = X 100%’ K€ [03 l]’ ue [0’ 1], ¢ € [0, 2”] (9)
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The degree to which the scalar approximation underestimates the intensity for given 7,, u, and y,
is specified by the local underestimation ¢,(z,, 4, 4,) defined by

6u(‘,'-Os “’ “0)= max 6(‘t()’ ”9”0’ ¢) (10)
¢€l0,2n]

Note that for some particular values of u and y,, the local underestimation may be negative thus
implying that the scalar approximation overestimates the intensity for all ¢ € [0, 2n]. Analogously,
the local overestimation ¢,(tq, 4, 1) is defined by

€,(To» My o) = min e(Ty, y, Ko, P), (1)
$<l0,2n]

and a positive local overestimation for some p and y, means that the scalar approximation
underestimates the intensity for all ¢ €[0, 2x]. Correspondingly, the maximum underestimation
€M%(1,) is given by

CLT“(TO) = max € (TOs H, p’O)’ (12)
pnel0,1],u0e0,1]

while the maximum overestimation is defined as

e?ax(TO) =- min 60(1:03 u, .uO) (13)
re0.1]u9=(0.1]

The azimuthal angles at which the local underestimation and local overestimation are reached are
denoted by ¢, (1o, i, o) and ¢, (zq, 4, 1), respectively, while the corresponding phase angles are
denoted by a,(7,, 1, 1) and a, (7o, U, Ko)- [The phase angle « is the angle between the direction of
light reflection given by (—pu, @) and the direction opposite to the direction of light incidence and
given by (—p, 7).]

A quantity widely used in planetary astrophysics is the geometric albedo A4,(z,) given by"

1
A,(5)=2 J Ao 10, — pto. ™)t (14)
0

The percent error in A4, resulting from the use of the scalar approximation is defined by

Ag(to) — 43(ro)
A;(To)

In both vector and scalar calculations of light reflection by finite atmospheres, we use the
adding/doubling method, as described in Refs. 1, 4, 15, and 18, and the invariant imbedding
approach, as developed in Refs. 19 and 20. Extensive accuracy tests have shown excellent agreement
between these two numerical techniques. For simplicity, we assume that the underlying surface is
Lambertian with albedo A4, i.e. the surface reflection matrix has the form

AL 0 0 0

GA(T0)= X 100%. (15)

R = (16)

0 0 00
0 0 0 O
0 0 0O
In computations for semi-infinite atmospheres, we employ an iterative solution of Ambartsumian’s
nonlinear integral equation for the reflection matrix (function), as suggested in Refs. 21 and 22.

3. CALCULATIONS AND DISCUSSION

In order to keep the paper to a reasonable size, we display here only the most representative
computations which illustrate our basic conclusions. In Figs. 2-7 we show the maximum
underestimation €J**(7,) and maximum overestimation €¢7*(t,) and the error in the geometric
albedo ¢, (7,) for different single scattering albedos @, depolarization factors J, and Lambertian
albedos A, . These plots can be used in practice to decide whether the scalar approximation may
be used or rigorous vector calculations should be employed. One sees that the vector/scalar



Rayleigh-scattering atmospheres 495

12
A 15'41—— VAN L‘= 799
10 VARRN VARRN :
I 2N\ [ 47N
. ZARNNE AR T e
’1’ / .\\.\\‘ /’1/ '/ .\.
5 [/ Y i
/7 / i
4 4l Al
V8 Y%
2 [ K
- ,/:/ /:/
< - =
=
- 12
[72] ao
u ‘04"0'9" B =08
10
> [ P e |
g / //,/'\._._-._....._. /] = =
=z 8 i Y 7
o // j'//
= s 771 ///.
= '// /' 4//
- 4 /// / /.
o 7 4,
=, / o
a 7 7
4 - ”
o -
L0
512
=
=< @ F 0.5 B =01
=10
=z
8
e Y
6 o —
s
7
4 /‘,'
,I
2 A
O%b' et ."I i
-2 -1 0 1 2 -2 -1 0 1 2
LOG(TAUOD) LOG(TAUD)

Fig. 2. Maximum overestimation ¢™*(z,) (solid lines) and maximum underestimation €}**(z,) (dashed
lines) and the error in the geometric albedo €,(t,) (dot—dashed lines) for 6 =0, 4, =0, and single
scattering albedos @& =1, 0.99, 0.9, 0.8, 0.5, and 0.1.

differences decrease with increasing depolarization factor and/or increasing surface albedo. For

optically thin layers (t, < 1), vector/scalar differences always decrease with decreasing single-scat-

tering albedo. In the limit 7,—0, Eq. (9) can be rewritten in terms of contributions of the first and

second orders of scattering to the reflected intensity (supplied by subscripts 1 and 2, respectively)
as

a(l3—13)

r ————> x 100%, i

‘Trven " (1n

which explains the @&-dependence for 7, < 1.2 [In Eq. (17) we have taken into account that for

unpolarized incident light I} = I3]. For optically thick atmospheres (7, > 1), vector/scalar differ-
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ences first increase as the single-scattering albedo decreases from 1 to about 0.8, but then decrease
with further decrease of @. With t,— 00, all the curves tend to the corresponding asymptotic limits
which are independent of the surface albedo and depend only on the albedo for single scattering
@ and depolarization factor . For single scattering albedos equal or close to unity (conservative
or nearly conservative scattering) and small surface albedos, the curves have a characteristic
maximum near t,~ 1 which disappears with increasing absorption and/or increasing surface
albedo. All three errors displayed in Figs. 2-7 have roughly the same order of magnitude.
Figures 8-16 illustrate the angular distribution of vector/scalar differences for 1,=1, & =1,
6 =0.031, and 4; =0. Note, however, that the contour plots displayed are rather typical and, in
conjunction with Figs. 2-7, give a general idea of what can be expected for other values of the
optical thickness, albedo for single scattering, depolarization factor, and surface albedo. Moreover,
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Fig. 3. Same as in Fig. 2, but for § =0.086.



Rayleigh-scattering atmospheres 497

12 l I
' 71N 7
8 A /{‘: A ";‘:‘\‘ —
AR — AN N s
/1/ i \.\\ /1 ’ \'\..—-
6 7 < =] 7
(// / et // /
4 )i i
/£ ‘
=z / /
2 2 ~ 7
- T STha
< - [~
=
- 12
n
w 54—0'9* W =038
x
w10
> TN
(o]
2, 7 TN =
o ///:‘/ P | o— . — {/ L-— — o — o o— o e & e
3 V4 /
-— 7 'I //
:;) 4 //’ {Il/
w pa //'
S 2 /.,/. //'I
° A g
g == .~
0
=
g 12
= ® = 05 B =01
<10
=
8
6 =
4 //
4
2 /.
A Y I S N
0 "*, l,‘-q_.——' * I I
-2 -1 0 1 2 -2 -1 0 1 2
LOG(TAUO) LOG(TAUO)

Fig. 4. Same as in Fig. 2, but for 6 =0.031.

we have found that, independently of the parameter values, the local underestimation is always
reached in the azimuth plane ¢ = 180°, i.e.

bu(Tos 1 o) = 180°. (18)

[Note that the step size in azimuth angle in our calculations of ¢,(z,, i, 4,) Was only 0.2°, thus
making the identity (18) numerically very accurate.] Therefore, the contour plot of a,(zg, u, io)
shown in Fig. 14 is exactly the same for any 7y, @, J, and 4, . Also, owing to the identity of Eq.
(18), the contour plot of the percent error e(t,, U, o, 180°) shown in Fig. 12 is at the same time
the contour plot of the local underestimation ¢,(z,, i, o). Owing to reciprocity, Figs. 8-16 are
symmetrical with respect to the diagonal u = y,.



498 M. 1. MISHCHENKO et al

One sees from Figs. 812 that the vector/scalar differences are somewhat larger in the azimuth
planes ¢ = 0° and ¢ = 180°, although they are rather significant in other azimuth planes as well.
As was noted above, the local underestimation is always reached at ¢ = 180°. On the other hand,
for a given y, the azimuth plane of the local overestimation rotates from 0° for equal or close
to 1 towards 90° (or, equivalently, 270°) with u—0 (Fig. 16). Schematically, this is illustrated in
Fig. 17.

The most interesting result of our calculations is that the local overestimation reaches its
maximum negative values at phase angles equal or close to 90° for all 4, (Fig. 15), while the local
underestimation is maximum at phase angles equal or close to 0° for almost all y, (Fig. 14). This
remarkable result, which is invariant for all 7,, &, 6, and A, suggests the following theoretical
explanation of the large vector/scalar differences in the case of Rayleigh scattering. It is clear that,
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Fig. 6. Same as in Fig. 4, but for 4, =04.

for unpolarized incident light and any directions of light incidence and reflection, the contribution
of photons scattered only once to the reflected intensity is exactly the same in both vector and scalar
formulations and is proportional to P, (= —a), where Py, is the (1, 1)-element of the scattering
matrix (i.e., phase function), and « is the phase angle. On the other hand, the light scattered in
the atmosphere many times becomes essentially unpolarized. Therefore, it is reasonable to assume
that it is photons scattered a small number of times, but more than once, which have the greatest
differences between the approximate “scalar’ intensity and the rigorous “vector’ intensity.! Thus,
the problem is to explain why these differences are maximum at phase angles equal or close to 0°
and 90°.

In this explanation, we must take into account the following factors.

(1) Two important features of the Rayleigh scattering matrix are that Rayleigh particles are
strong (perfect or almost perfect) polarizers at scattering angles near 90°, and the Rayleigh phase
function is nearly isotropic.
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(2) Polarization of light directly affects the intensity only through the second Stokes parameter,
0, and the element P, of the scattering matrix. The effect is maximum when Q has the largest
possible absolute value (i.e., when |Q]| is close or equal to /) and, in the case of Rayleigh scattering,
when the scattering angle is close to 90° [see Eq. (6)].

(3) Unlike the intensity, the Stokes parameter Q changes not only due to light scattering, but
also due to rotations of the reference plane. The maximum possible absolute change of Q due to
rotations of the reference plane occurs when the angle of rotation is 90°, and Q changes its sign
while not changing its absolute value [see Eq. (5)].

Thus, we can expect that low-order (and first of all second-order) light-scattering paths involving
right scattering angles and right angles of rotation of the scattering plane will have the greatest
vector/scalar differences. Because Rayleigh particles are nearly isotropic scatterers, the contribution
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Fig. 8. Contour plot of percent error €(ty, , y, 9) for 1,=1, 6 =0.031, & =1, 4, =0, and ¢ =0°.
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Fig. 17. Rotation of the azimuth plane at which the local overestimation is reached. The sunlight is

incident in the azimuth plane ¢ = 0°. The dashed curve shows the azimuth plane of local overestimation

for different directions of reflection. ¢, is equal to zero for u larger than some critical value and then rotates
toward 270° (or, equivalently, 90°) as u tends to zero.

of such scattering paths to the reflected intensity will be rather significant, thus explaining large
vector/scalar differences in the case of Rayleigh scattering.

Two such second-order light scattering paths are shown in Fig. 18. The left path involves two
right-angle scatterings, but does not involve rotations of the scattering plane, and the resulting
phase angle is equal to zero. The right path involves not only two right-angle scatterings, but also
the right-angle rotation of the scattering plane, and the resulting phase angle is equal to 90°. In
the scalar approximation, the contribution of these two paths to the reflected intensity is the same
and, in the absence of depolarization, is proportional to [P, (90°)]* = 9/16. In the rigorous vector
formulation, the contribution of the left path to the reflected intensity is proportional to the
(1, 1)-element of the P(90°)P(90°) matrix which is equal to 18/16, while the contribution of the right
scattering path is proportional to the (1, 1)-element of the matrix P(90°)L(90°)P(90°) which is equal
to zero. Thus, in the first case (zero phase angle), the scalar approximation significantly
underestimates the intensity, while in the second case (90° phase angle), it equally significantly
overestimates the intensity, which is in full agreement with the results displayed in Figs. 14 and 15.

The relevance of this theoretical explanation is illustrated in Figs. 19-23 calculated for a
semi-infinite Rayleigh atmosphere with @ = 1 and é = 0. It is clearly seen that, in accordance with
our theoretical analysis, the errors in the second-order-scattering contribution to the reflected
intensity are much larger than those in the total intensity, and the errors are maximum at phase
angles 0° and 90°.

4. SUMMARY AND CONCLUSIONS

The principal results of our paper are summarized in the following two points.

(1) On the basis of extensive vector and scalar multiple scattering calculations, we systematically
investigated the errors induced by the neglect of polarization in calculations of the intensity of light
reflected by a homogeneous, plane-parallel Rayleigh atmosphere above a Lambertian surface. We
have shown that the errors decrease with increasing depolarization factor and/or increasing surface

Fig. 18. Two second-order light scattering paths involving right scattering angles. The direction of
propagation denoted by a crossed circle is into or out of the paper. The right path does while the left
path does not involve the right-angle rotation of the scattering plane.
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Fig. 16. Contour plot of ¢,(ty, i, tty) versus color diagram of local overestimation e, (zy, i, ) for
=1, d =0.031, @ =1, and 4, =0. Note that ¢, is zero above and to the right of the contour
labeled by 0.
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Fig. 22. Same as in Fig. 20, for the second-order-scattering contribution to the reflected intensity. Figure
23 (upper panel, dashed line) shows the cross-section of this diagram along the 0° phase angle.
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Fig. 23. Solid curves show the percent errors €(o0, — iy, o, 180°) (upper panel) and e(oo, —[1-p2)"2,

to, 0°) (lower panel) for & =0 and & = 1. The first of these errors corresponds to the phase angle « = 0°,

while the second one corresponds to the phase angle « = 90°. Dashed curves show the same errors but
calculated for the second-order-scattering contribution to the total reflected intensity.

albedo. For optically thin layers, vector/scalar differences always decrease with decreasing
single-scattering albedo. For optically thick atmospheres, vector/scalar differences first increase as
the single-scattering albedo increases from 1 to about 0.8, but then decrease with further decrease
of &. For conservative or nearly conservative scattering (single-scattering albedo close to unity) and
small surface albedos, the errors are maximum at optical thicknesses of about 1. The errors are
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somewhat larger in the azimuth planes ¢ = 0° and ¢ = 180°, although they are rather significant
in other azimuth planes as well. Maximum errors were found at phase angles equal or close to 0°
and 90°. The errors may be too large for many practical applications, and, therefore, rigorous
vector calculations should be employed whenever possible. However, if approximate scalar
calculations are used, we recommend to avoid geometries involving phase angles equal or close to
0° and 90°, where the errors are especially significant.

(2) We have proposed a theoretical explanation of the large vector/scalar differences in the case
of Rayleigh scattering. According to this explanation, the large differences are caused by the
particular structure of the Rayleigh scattering matrix (perfect or almost perfect polarization at 90°
scattering angle and nearly isotropic phase function) and come from lower-order (except first-order)
light scattering paths involving right scattering angles and right-angle rotations of the scattering
plane. It may be noticed that similar “peculiarity”” of Rayleigh scattering was also found in the
problem of weak localization of light in discrete random media.***
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